Soybean Yield & Quality – My Predictions, Cautions,

I’ve been very hesitant to write this article and I’ve held off for several weeks, hoping to have more yield results in before saying anything. But I’ve seen enough so far in my observations of our variety tests as well as other fields that I think what I’m about to write is fairly accurate. My main concern all along was how much the Aug and September drought hurt us. Below is the rainfall anomalies in the U.S. It’s easy to see that we were way below average with the exception of southeast Virginia and parts of the Eastern Shore.

First, the maturity group 3 and early-4 soybean should be the cream of the crop this year. The yields that we are seeing is impressive and I’m hearing the same from others. These maturities appeared to avoid the drought for the most part. Plus the seed quality is very good (somewhat unusual for early-maturing varieties) due to the lack of September rain although we experienced another warmer-than-average September. This is us harvesting in Orange County last week – yields were in the 60’s and 70’s.

What about the later-maturing varieties that we grow the most of? A casual look at the soybean remaining in the field seem to indicate that we have a pretty good pod load in most cases, with late-planted soybean being the exception. Although the drought did hurt us, it’s somewhat hard to see now. Again, that’s from a casual observation. A closer look at the late-4’s reveal that the yield potential is still pretty good (see photos below; we did not harvest these due to a few varieties not yet being fully mature). Although we had a few aborted and small seed, most were intact. Keep in mind that this is a very good soil (Davidson clay) and the area did pick up a few rains that other parts of Virginia did not.

But what about our group 5 soybean? They don’t look nearly as good. Although pod abortion was not too bad, we had a good deal of flat pods and seed abortion within pods that were not completely flat where all seed were aborted. Don’t confuse the flat seed remaining in the pod with stink bug damage. Sting bug damage will usually result in discolored seed (there is one seed below that shows this); the small/flat seed due to drought-stress are usually not discolored. There was a pretty striking difference between the late-4’s and mid- to late-5’s; in general, the later maturity the more seed abortion.

Although I’m not seeing another concern, I think that it’s worth mentioning. A few years ago we observed drought-related green seed. These were not from late-maturing green stems or scattered plants. They were from the plant dying before the crop matured. This is only the case where we have extreme drought conditions and usually on a very low water-holding-capacity soil. But, I am seeing some dead leaves sticking to the stem, an indication of early plant death (see photo below) on some of our later-maturing varieties. While I hope this is not and issue this year, I did want to bring it to your attention. Too much green seed in a load will result in a reduced price for the crop.

Finally a note about green stems and branches. Anytime that we have a high amount of pod and/or seed abortion we can end up with some green stems. In some cases, we’ll even have green leaves on the plant although the seed are dry. This sometimes occur with high infestations of brown marmorated stink bug along the edge of a field or with certain viruses. But, drought can also cause this.

In addition to green stems, I’m getting reports of dry seed on the main stem (basically a mature plant), but the plant contains many green stems with immature seed. We have seen this in past years in low areas of the field where an overabundance of rainfall occurred early in the vegetative stages followed by a short intense drought (which I think stopped main stem growth) and by low light conditions. Once the drought was over, branch growth then took over. Branches are always behind the rest of the crop in maturity and the branches basically behave indeterminately (lower pods are more mature than upper pods), resulting in many immature seed at harvest. the last two pictures below are from late-May planted soybean in Mecklenburg County this year. At that location, about 10-12 inches of rain fell in the early vegetative stages and the soybean did not grow for the next 3-4 weeks, even with all this moisture. There was also lots of deer feeding. This was of course followed with the drought in Aug and September. While that situation was not exactly the same as the one I described previously, the problem is similar.

Regardless, one has to decide whether to harvest now and get the bulk of the crop before it shatters or wait until the rest of the seed to dry down. You definitely don’t want a lot of “butterbeans” in the load, but neither do you want lots of high-moisture seed that will affect overall moisture and storability. Shattering in today’s varieties are not as bad as in the past, so I’d wait a few days.

Corn earworm pest problems on hemp and results of recent insecticide tests

By: Tom Kuhar (Entomology Professor, Virginia Tech), Kadie Britt (Ph.D. student researching hemp IPM), and Helene Doughty (Entomologist, Eastern Shore AREC, Painter, VA)

Fig. 1. Corn earworm damaging CBD hemp in Virginia. Photo by Kadie Britt.

Corn earworm has become one of the most important pests of hemp, Cannabis sativa, in Virginia and many other states (Fig. 1).  Please see our factsheet on this insect as it relates to hemp: https://www.pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/ENTO/ento-328/ENTO-328.pdf

Corn earworm can be quite damaging to the seed heads of hemp grown for grain (Fig. 2), but, as we’ve seen recently in Virginia, the pest can also damage hemp grown for CBD oil.  Over the past few weeks, corn earworm densities and damage to CBD hemp has reached very high levels throughout Virginia, and their presence in fields has been associated with increased flower bud rot (Fig. 3). This can result in significant economic damage to that crop. 

Due to strict regulations on pesticide use on hemp, insecticide recommendations for managing this pest are quite limited at this time.  Recently, we evaluated the efficacy of some naturally-derived pesticides that can be legally applied on hemp in Virginia and one naturally-derived (OMRI-certified) insecticide that currently is not allowed to be applied on hemp (Spinosad).    

Fig. 1. Corn earworm damage to grain hemp. Photo by Helene Doughty, Eastern Shore AREC.
Fig. 2. Bud rot on CBD hemp. Photo by Kadie Britt.

Eastern Shore Insecticide Field Trial:

Treatments included:

  1. Gemstar (5 fl oz/A) – which is a nuclear polyhedrosis virus that is specific to the corn earworm species.  The virus causes corn earworm to become sick and die.  Fig. 4. Shows a corn earworm killed by the virus. 
  2. Javelin WG (8 oz/A)Bacillus thuringiensis (Bt) strain kurstaki – bacterial crystalline proteins that kill caterpillars.
  3. Dipel DF (16 oz/A) – Bt kurstaki different formulation
  4. BoteGHA (32 fl oz/A) Beauveria bassiana – entomopathogenic fungi
  5. Entrust (5 oz/A) – Spinosad derived from soil microbes. *cannot legally be applied on hemp in Virginia. 
Fig. 4. Corn earworm killed by virus (Gemstar insecticide). ESAREC 2019. Photo by Helene Doughty.

We evaluated their efficacy in the field on the Eastern Shore of Virginia in a randomized complete block small plot trial.  Hemp plots were sprayed twice (1 week apart) and numbers of live CEW larvae and damage was assessed.  Results are shown in Figs. 5 & 6.  Entrust was the only product that provided effective control of CEW.  Unfortunately, this is the one product that we evaluated that is not allowed to be applied on hemp.  The insecticide Entrust is OMRI-certified however.    

Fig. 5. Numbers of live corn earworm larvae on hemp plants after insecticide treatments at the ESAREC, Painter, VA.
Fig. 6 Corn earworm damage to hemp seeds in the field after insecticide treatments.

Virginia Tech bioassay trial:

Treatments included:

  1. Gemstar (5 fl oz/A) – which is a nuclear polyhedrosis virus that is specific to the corn earworm species.  The virus causes corn earworm to become sick and die.  Fig. 3. Shows a corn earworm killed by the virus. 
  2. Javelin WG (8 oz/A)Bacillus thuringiensis (Bt) strain kurstaki – bacterial crystalline proteins that kill caterpillars.
  3. Dipel DF (16 oz/A) – Bt kurstaki different formulation
  4. Xentari (16 oz/A) – Bacillus thuringiensis , subsp. aizawai , Strain ABTS-1857
  5. BoteGHA (32 fl oz/A) Beauveria bassiana – entomopathogenic fungi
  6. Entrust (5 oz/A) – Spinosad derived from soil microbes. *cannot legally be applied on hemp in Virginia. 

In order to evaluate the efficacy, untreated hemp seed heads were collected from Kentland Farm and dipped in each of the treatments.  Approximately 1 oz of seeds was placed per diet cup and four reps of 10 cups each were set up for the aforementioned six insecticide treatments.  CEW larvae (3rd instar (medium sized) were collected from sweet corn planted at Kentland Farm and were immediately placed 1 larva per cup.  Mortality was evaluated 1, 2, 3, and 4 days after treatment (Fig. 7).  Similar to the Eastern shore field trial, Entrust provided the most effective control of CEW.  However, this trial also included the Bt aizawai product Xentari, which also provided significant control (better than the other products except spinosad.  Xentari is allowed for use on hemp in Virginia.  For best management of corn earworm during this time, apply Bt products on hemp every few (2-3) days in early morning or late evening. Corn earworm must consume the insecticide for the application to be effective, so ensure good spray coverage on plants. Dead worms may not be noticed until 48 hours after first application.

Fig. 7. Percentage mortality of corn earworm larvae placed on treated hemp seeds in a controlled laboratory experiment. DAT refers to days after treatment (insecticide dip).

EVAREC Soybean Field Day is This Tuesday

The Eastern Virginia Agricultural Research and Extension Center (EVAREC) Soybean Field Day is this Tuesday, Sept. 24. The field day begins at 8:45 am and tours will begin promptly at 9:00 am. There are a number of different topics to be discussed, all supported by the Virginia Soybean Checkoff. The 2019 full-season soybean variety test will also be available for viewing. Lunch will be served by Nixon’s Catering. We look forward to seeing you there.

The EVARE is located at 2229 Menokin Road, Warsaw, VA 22572. For more information, contact Dr. Joseph Oakes, EVAREC Superintendent at 804-333-3485.

Group 1 Field Tour Schedule

  • 8:45 – Welcome & Introductions; Load Trailers to ACR 2
  • 9:00-9:20 – Integrated Pest Management Approach for Soybean
  • Dr. Sally Taylor
  • 9:25-9:45 – Food Grade Soybean Breeding
    • Mr. Nick Lord
  • 9:45 – Load Trailers to Y1
  • 9:55-10:15 – The Best Maturity Group for Your Farm
    • Dr. David Holshouser
  • 10:15-10:30 – The Use of UAV in Crop Research and Production
    • Dr. Joseph Oakes
  • 10:35-10:55 – Roundup-Ready and Conventional Soybean Breeding
    • Dr. Bo Zhang
  • 11:00-11:20 – Weed Management in Soybean
    • Dr. Michael Flessner
  • 11:20 – Walk to Seed Lab

Program & Speakers in the Seed Lab

  • 11:40 – Begin Indoor Program
    • Dr. John Fike: VT Forage Extension Specialist – Hemp Production
    • Dr. Mike Evans: VT School of Plant and Environmental Sciences
  • 12:00 – Lunch is Served: Nixon’s Catering

Thank You to Our Field Day Sponsors!

Crabbe Aviation                       Ryan Ellis

Frazier Quarries                      UniSouth Genetics

James River Equipment            Virginia Crop Improv. Assoc.

Montague Farms

Virginia Soybean Yield Contest

Any grower (owner-operator, tenant, or tenant-landlord team) who is a member of the Virginia Soybean Association and produces 10 acres or more of soybeans within Virginia’s boundaries is eligible to enter this year’s soybean yield contest.

The purpose of the Virginia Soybean Yield Contest is to emphasize and demonstrate the practices necessary to produce maximum economic yields, to recognize those producers who grow high-yielding soybeans, and to gather data on the practices utilized by these outstanding producers.  The Virginia Soybean Association in cooperation with Virginia Cooperative Extension sponsors this program. The Virginia Soybean Association in cooperation with Virginia Cooperative Extension sponsors this program.

There are three Soybean Yield Contest categories: 1) Full-Season, Non-irrigated; 2) Double-Crop, Non-irrigated; and 3) Irrigated (Full-Season or Double-Crop).  A full-season system is defined as the grain or seed harvest of one summer crop (soybean in this case) from the same field in one year. Double-crop is defined as planting soybean immediately following grain or seed harvest of barley, wheat, or rapeseed; thus harvesting two crops from the same field in the same year.  If field has been irrigated one or more times, the entry will be considered an irrigated field and the will be placed into the irrigated contest.

Details can be found in the attached document below. Please consider entering the contest.

Corn earworm update for September 5, 2019

Average nightly black light trap captures of corn earworm moths this week were: Chesapeake=33; Greensville=13; Southampton=10; Suffolk=27. Hanover had 12 per night if averaged over the past 2 nights, but 3 if averaged over the entire week. Here is the table:

In our corn earworm pyrethroid resistance monitoring experiment (adult vial tests), the seasonal average is 36% survival to a 24-hour exposure of 5 micrograms of cypermethrin per vial.

Corn earworm update for August 29, 2019

Nightly corn earworm/bollworm moth averages for reporting black light trap stations this week were: Greensville=22; Prince George (Templeton)=12; Prince George (Disputanta)=10; Southampton=13; Suffolk=32. Please see the link to the table below and also compare this year’s Suffolk, VA numbers to the past several years.

I have seen a large number of corn earworm moths in our soybean at the Tidewater Agricultural Research & Extension Center in Suffolk this week. Remember to scout for larvae and use the threshold calculator for soybean: https://www.ces.ncsu.edu/wp-content/uploads/2017/08/CEW-calculator-v0.006.html

Our pheromone trap catches at Suffolk have also increased and we were able to conduct more adult vial tests for resistance monitoring using the pyrethroid cypermethrin. The average survival for this season is now 37%.

Update on peanut maturity, Aug 28

On Aug 26, a pod blasting clinic has been organized at the Indika Farms in Windsor, VA. A total of 24 samples (fields) representing 1056 acres were evaluated. Samples were from Isle of Wight, Suffolk, and a few from Southampton counties. Optimum digging for these samples was estimated to take place in 15 to 30 days from Aug 26, with the majority of the samples showing to be ready in 20 days. Dates for future pod blasting clinics are Sep 9 at Indika Farms (contact Livvy Preisser livvy16@vt.edu for details), Sep 4, 10 and 18 in Southampton (contact Joshua Holland cvfd262@vt.edu for details), and Sep 19 in Greensville (contact Sara Rutherford sriggan@vt.edu for details).

A few pictures from Aug 26 pod blasting clinic are shown below.

Bailey planted on May 8 in a sandy soil in Southampton Co., VA.
Bailey planted mid-May in IOW, VA.
Sullivan planted on May 8.
Emery planted on May 9.

Eastern Virginia AREC Soybean Field Day – Sept 24, 2019

Join us for the 2019 Eastern Virginia AREC Soybean Field Day in Warsaw on Sept. 24.

Field Tour Topics
• Roundup-Ready and conventional soybean breeding: Dr. Bo Zhang
• Food-grade soybean breeding: Dr. Bo Zhang
• The best maturity group for your farm: Dr. David Holshouser
• Weed management in soybean: Dr. Michael Flessner
• Integrated pest management approach for soybean: Dr. Sally Taylor
• Use of UAV in crop research and production: Dr. Joseph Oakes
• Industrial hemp production: Dr. John Fike

Registration begins at 8:00 a.m.
➢ Field research tours begin at 8:30 a.m.
➢ Lunch: 12:00 p.m.

Please register by emailing Joseph Oakes at jcoakes@vt.edu

Corn earworm pressure and recommendations for sweet corn in Virginia

OLYMPUS DIGITAL CAMERA

Corn earworm larva in mature sweet corn ear.

Corn earworm is the major pest attacking corn ears in the mid-Atlantic U.S. Moth activity has been high in some areas of Virginia such as the Eastern Shore based on pheromone trap catches and grower reports in fields. Sweet corn is one of the most preferred host plants for corn earworm, especially if fresh silks are available when female moths are ovipositing.

For control in sweet corn, it is recommended to begin treatment when the ear shanks emerge or the very first silks appear. Silk sprays should continue on a schedule based on pest pressure on the farm or area blacklight or pheromone trap counts, geographical location, and time of year. This time of year (August) it may be necessary to treat on a 2-3 day schedule.

Dr. Sally Taylor (Tidewater AREC) and I have seen increased levels of pyrethroid (insecticide class 3A) resistance in CEW populations throughout Virginia, and that these insecticides should be used with caution and rotated to other insecticide classes within a season.  See the list of recommended insecticides in the table.

During heavy populations and high temperatures, treatments will need to be made according to the legal “days to harvest” of the chemical. For best control during heavy infestations, maximize the gallonage of water per acre, use a wetting agent, and make applications during the early morning if possible. If irrigation or rains wash off the spray within 24 hrs after an application, repeat treatment as soon as the foliage dries.

 
Group Product Name Product Rate   Active Ingredient(s) (*=Restricted Use) PHI (d) REI (h) Bee TR
3A Lambda-Cy, LambdaT 1.92 to 3.84 fl oz/A lambda-cyhalothrin* 7 12 H
3A Mustang Maxx 2.24 to 4.0 fl oz/A zeta-cypermethrin* 1 12 H
3A Perm-UP 3.2EC 4.0 to 8.0 fl oz/A permethrin* 1 12 H
3A Tombstone 2EC 0.8 to 2.8 fl oz/A cyfluthrin* 0 12 H
3A Warrior II 1.28 to 1.92 fl oz/A lambda-cyhalothrin* 7 12 H
3A Asana XL 5.8 to 9.6 fl oz/A esfenvalerate* 3 12 H
3A Baythroid XL 0.8 to 2.8 fl oz/A beta-cyfluthrin* 0 12 H
3A Bifenture 2EC, Sniper 2.1 to 6.4 fl oz/A bifenthrin* 3 12 H
3A Hero EC 4.0 to 10.3 fl oz/A zeta-cypermethrin* + bifenthrin* 3 12 H
1A Lannate LV 1.0 to 1.5 pt/A methomyl* See label 48 H
5 Blackhawk 36WG 2.2 to 3.3 oz/A spinosad 1 4 M
5 Radiant SC 3.0 to 6.0 fl oz/A spinetoram 1 4 H
28 Coragen 1.67SC 3.5 to 7.5 fl oz/A chlorantraniliprole 1 4 L
Combo products containing a pyrethroid 3A          
Cobalt Advanced 11.0 to 42.0 fl oz/A lambda-cyhalothrin* + chlorpyrifos* (Group 1B) 21 24 H
Besiege 6.0 to 10.0 fl oz/A lambda-cyhalothrin*+chlorantraniliprole (Group 28) 7 12 H

Bt Transgenic Sweet Corn

Bacillus thuringiensis (Bt) sweet corn hybrids are available that express single or pyramided insecticidal proteins for protection against lepidopteran “worm” pests. Attribute® hybrids (Syngenta Seeds) expressing the cry1Ab protein (YieldGard trait) have been available since 1998, and these hybrids now express the Liberty Link herbicide tolerance trait. Performance Series™ hybrids (Seminis Seeds) expressing two Bt proteins (cry1A.105 and cy2Ab2) are also available and these have the RoundupReady gene as well. However, based on multiple years of field trials in Virginia and surrounding states, neither of these Bt traits/varieties provide effective control of CEW due to Bt resistance development to the Cry proteins.  Thus, fields planted in these Bt hybrids will need insecticide applications, depending on the insect pressure and level of resistance in the population. In addition, under moderate to high moth activity (early August-early September), many eggs are laid later in ear development after the expressed Bt protein has degraded in dead silk tissue. This loss of protein activity also is accelerated by hot, dry conditions, which cause rapid desiccation of the silk tissue. As a result, earworms and fall armyworms have a greater chance of surviving and invading the ear. Under high moth activity, up to 50% or more of the Attribute ears can become infested with larvae. In this situation, spray schedules of 3 or 4 applications starting 3-4 days after the first onset of silking and repeated 3-4 days apart may be required.

Attribute® II Bt corn hybrids (Syngenta Seeds) with pyramided genes expressing YieldGard and Viptera traits (Vip3A protein) and stacked with the Liberty Link trait are now available. This Bt pyramided gene technology currently provides outstanding nearly 100% control of all lepidopteran pests of sweet corn.