Author Archives: Hillary Mehl

Virginia Frost Advisory

The Virginia Frost Advisory predicts that a frost is expected next Monday morning (10/19) for Suffolk, Capron, Waverly, Skippers, and Lewiston.  A copy of the report can be downloaded below. For up-to-date frost advisories for the region, see the Peanut-Cotton Infonet (http://webipm.ento.vt.edu/cgi-bin/listfrost).

Frost Advisory 10-12-2015

Soybean disease update – frogeye leaf spot

I have received numerous reports of soybean fields with moderate to severe frogeye leaf spot (FLS) over the past several weeks. In most cases, the disease is showing up in fields planted to a FLS susceptible variety and/or in fields that have been in continuous soybean. FLS can cause significant yield loss in susceptible varieties, so fungicides may be needed to control the disease in high risk fields (see accompanying blog post “Foliar fungicide applications in soybean”). Unfortunately, FLS isolates resistant to strobilurin (QoI, Group 11) fungicides have been confirmed from some locations in Virginia, so fungicide control failures can occur if the proper fungicide chemistries are not selected as illustrated in the pictures below. A soybean fungicide efficacy table with ratings based on data from multiple field trials in multiple states can be downloaded below. We are currently surveying fields in Virginia for strobilurin-resistant FLS and will have data on the frequency and distribution of resistance later this year. In the meantime, it should be assumed that FLS will not be controlled by strobilurin fungicides, and other fungicide chemistries (e.g. triazoles) should be applied in fields with FLS either alone or in combination with a strobilurin. Keep in mind that strobilurin fungicides still provide good control of other diseases that can occur in soybean.

FLS - untreated

FLS – untreated

FLS - 2 fungicide applications

FLS – 2 fungicide applications

Soybean disease scouting & fungicide guide 2015

Foliar fungicide applications in soybean

If and when to make a foliar fungicide application is a decision soybean producers must make each growing season. Every year is slightly different, and it is difficult to predict whether or not a fungicide application will be profitable. However, the risk factors listed below can be used to make an educated decision of whether or not to spray. The greater the number of risk factors in your field, the more likely it is that a fungicide application will be profitable.

  1. Growth stage of the crop. Disease is most likely to impact yield during pod and seed development since this is when the yield of the crop is being formed. Fungicides are more likely to result in a yield response if disease occurs between the beginning pod (R3) and full seed (R6) growth stages, a period that lasts approximately 30 days. Results from research conducted in 2014 suggest that a fungicide application is most likely to result in a yield response if weather conditions (see #2 below) conducive for disease development occur within two weeks of the R3/R4 growth stage. Overall, the optimum timing for a fungicide is at the R3/R4 growth stage, though later applications can be beneficial if diseases develop later in the season. Fungicide applications after the R5 growth stage are not recommended.
  2. Weather conditions. Currently, research is being conducted to develop a weather-based fungicide decision aid for soybean. Infection, growth, and sporulation by foliar pathogens occurs when temperatures are moderately warm and during periods of rainfall or high humidity. To determine the relative disease risk based on weather conditions, find a source of hourly temperature, rainfall, and relative humidity data (e.g. Weather Underground or a personal weather station). If over the past week the following conditions occurred on two or more days, the risk of disease development in the crop is high:
    • Average daily temperatures from 65-80 °F AND
    • 10 or more hours of relative humidity at or above 95% OR a rainfall event
    These conditions have occurred in many areas throughout Virginia over the past week as storms have moved through. However, before making a fungicide application consider the other risk factors below.
  3. Susceptibility of soybean variety to disease. Soybean varieties vary in their susceptibility to diseases, and more susceptible varieties are more likely to need a fungicide to protect yield. Keep in mind that a variety may be relatively resistant/tolerant to one or a few diseases but susceptible to others, so be aware of which diseases are most likely to occur in your field (see #4 and #5 below).
  4. Field history. Soybean debris is a source of pathogen inoculum, so diseases will show up earlier and be more severe in fields planted to soybean year after year compared to those in rotation with corn or another crop. History of a particular disease in a field should also be considered since it is likely to occur year after year.
  5. Confirmation of disease in a field. If you see a foliar disease starting to develop in your soybean crop, it may be a sign that it is time to apply a fungicide. Scouting may be useful for some diseases such as frogeye leaf spot, but other diseases (e.g. Cercospora blight) do not show symptoms until long after infections have occurred. Fungicides are more effective when applied preventatively, but applications shortly after the onset of symptoms will slow the progress of the disease. Thresholds have not been established for frogeye leaf spot or other foliar diseases of soybean.
  6. Yield potential. This year some soybean fields got off to a poor start and never really recovered. If growth is poor and yield potential is low, you do not have much yield to protect and fungicide applications are less likely to be profitable. In contrast, if a crop has high yield potential, a fungicide application can help to maximize that yield, especially if the variety is susceptible to disease.

Corn disease update — July 28, 2015

In an update to my previous post, southern corn rust has now been confirmed in Chesapeake, VA. This is a few days earlier than in 2014 (August 3), but most of the field corn in the region is mature enough (dent stage) that yield should not be impacted. Late planted corn in fields with good yield potential (120 bu/ac +) may need to be protected with a foliar fungicide. Strobilurins are good preventative fungicides whereas triazoles are recommended once sporulation is observed in a field due to their curative activity. A combination fungicide is a good option as long as a strobilurin fungicide has not been applied previously. Wet, warm weather favors disease development. Once sporulation occurs, symptoms of rust are relatively obvious. Lesions start out as raised, blister-like pustules then break open to reveal orange spores. Samples of corn plants with symptoms of southern rust can be submitted to the disease clinic at the Virginia Tech Tidewater AREC (contact Dr. Hillary Mehl, hlmehl@vt.edu).

Corn disease update – July 26, 2015

Much of the field corn in the region is near or at the dent stage and no longer at risk for yield loss from foliar diseases. One disease I frequently receive questions about is southern corn rust. Southern corn rust is a potentially aggressive disease, but the fungus does not overwinter in Virginia and it is typically seen late in the growing season if at all. In 2014, southern corn rust was confirmed in Virginia on August 3, which is relatively early compared to other years. As of this week, southern corn rust has been confirmed from four North Carolina counties (Hyde, Lenior, Beaufort, and Camden) but it has not been observed in Virginia. We very well may see southern corn rust in southeastern Virginia within the next couple of weeks, but there is no need to panic. Yield of corn at or near the dent stage is unlikely to be impacted by the disease, but late planted corn in fields with good yield potential (120 bu/ac +) may need to be protected with a foliar fungicide. Strobilurins are good preventative fungicides whereas triazoles are recommended once sporulation is observed in a field due to their curative activity. A combination fungicide is a good option as long as a strobilurin fungicide has not been applied previously. Wet, warm weather favors disease development. Once sporulation occurs, symptoms of rust are relatively obvious. Lesions start out as raised, blister-like pustules then break open to reveal orange spores. Samples of corn plants with symptoms of southern rust can be submitted to the disease clinic at the Virginia Tech Tidewater AREC (contact Dr. Hillary Mehl, hlmehl@vt.edu).

Southern corn rust

Southern corn rust

Fungicide Resistant Frogeye Leaf Spot Present in Virginia

Fungicides are an important and effective tool for management of fungal diseases of crops including soybean. Unfortunately, over time fungal pathogens have the potential to develop resistance to specific fungicide modes-of-action. Mutations conferring resistance to fungicides are relatively rare, but multiple applications of the same fungicide chemistry impose selection pressure on pathogen populations and increase the frequency of those mutations over relatively short periods of time. Thus, specific fungicide chemistries have the potential to lose their effectiveness over time. Fungicide resistant isolates of Cercospora sojina, the causal agent of frogeye leaf spot in soybean, have recently been confirmed throughout the southeast including in North Carolina in 2013 and Virginia in 2014. In 2014, a small preliminary survey was conducted to determine if fungicide resistance is occurring in Virginia populations of frogeye leaf spot. Four fields were tested, and two of those fields had fungicide resistant strains. The resistance is specific to strobilurin (QoI, FRAC group 11) fungicides, which are highly effective for control of fungal foliar diseases but to which resistance can rapidly occur within fungal populations. Effective foliar disease management requires appropriate fungicide chemistry selection based on the specific pathogens present and their sensitivity to different fungicide modes of action.

Additional isolates of the frogeye leaf spot pathogen from throughout Virginia need to be collected and tested for fungicide resistance so that appropriate fungicide recommendations can be made. Other states have already initiated fungicide resistance monitoring programs for the causal agent of frogeye leaf spot (C. sojina), and we will implement a similar program in Virginia. Soybean leaves with symptoms of frogeye leaf spot will be collected throughout the 2015 growing season, the fungus will be isolated, and isolates will be tested for resistance to strobilurin (QoI) fungicides. If fungicide resistance is widespread in Virginia, recommendations for foliar fungicides and/or cultivar selection may need to be modified. If incidence of fungicide resistance is low, we will continue to monitor fungal populations and assess the risk of fungicide control failures on a year-by-year basis.

Frogeye leaf spot

In order to implement an effective fungicide resistance monitoring program, we are requesting that leaf samples from soybean fields with symptoms of frogeye leaf spot (see pictures above) be submitted to the Tidewater AREC for testing. For more information on submitting samples, please contact Dr. Hillary Mehl (757) 657-6450 ext. 423 or hlmehl@vt.edu.

Peanut Disease Update

Recent warm, wet weather has been optimal for both plant growth and fungal disease development in peanut and other crops. Early planted peanut in southeastern Virginia is near the R3 (beginning pod) stage, so it is almost time to make the first fungicide application for leaf spot. The first spray can be delayed until two weeks after R3 on Bailey. Last effective spray dates for leaf spot can be found on the Virginia Peanut-Cotton Infonet website.

Sclerotinia blight risk in based on temperature, rainfall/humidity, and crop growth. Temperature and rainfall have been conducive for Sclerotinia blight, but Sclerotinia risk is considered low to moderate prior to canopy closure. However, rapid growth of the peanut crop in some fields has resulted in thick canopies that provide the moist micro-climate necessary for disease development. Thus, now is the time to start scouting for Sclerotinia blight in peanut fields, especially if vines are within six inches of touching. If the wet weather continues, Sclerotinia blight risk is expected to be high within the next couple of weeks.

Corn Disease Update

Recent warm, wet weather has favored development of foliar diseases in corn and other crops. Northern corn leaf blight has been confirmed in southeastern Virginia over the past week, and gray leaf spot has been observed on corn in the region. Corn in much of the state is at or just beyond tasseling, and it is not too late to consider a foliar fungicide application. Several factors increase the risk of corn yield loss to foliar diseases and the chances that application of a fungicide will be profitable.

  • Susceptibility of corn hybrid to disease. Varieties have a high turnover rate so check with your local extension office or seed dealer for current information on which varieties have some level of resistance to diseases in the region. Be aware of the specific diseases your hybrid is susceptible or resistant to.
  • Yield potential. If yield potential is low, you do not have much to gain and fungicide applications are less likely to be profitable.
  • Previous crop and cropping system (e.g. no till). Many pathogens are able to survive on crop residues. Keep in mind that some diseases overwinter on crop debris in Virginia (e.g. gray leaf spot) whereas others require a living plant host and must move in from warmer regions each year (e.g. southern corn rust).
  • Crop growth stage and timing of fungicide applications. Diseases are more likely to impact yield at particular growth stages of the crop (typically during development of the grain) so timing fungicide applications accordingly is key.
  • Disease pressure. Which diseases, if any, are present, and how widespread are they? Scouting and accurate pathogen/pest identification are critical components of any IPM program. Presence of a disease on lower leaves (2nd or 3rd leaf below the ear) at or near tasseling may indicate the need for a fungicide application. Yield loss can occur if diseases reach the ear leaf prior to grain fill, but the appearance of foliar disease following the dent stage is unlikely to impact yield. A “Corn Disease Scouting and Fungicide Guide” can be downloaded below.
  • Weather. Temperature and humidity greatly influence the onset and development of disease. Even if the crop is susceptible and a pathogen is present, the risk of yield loss to disease may be low if environmental conditions are not conducive pathogen growth and reproduction. Warm, humid conditions are favorable for many diseases in our region. In some cases, the micro-climate within a field may be conducive for disease development even when ambient conditions are relatively dry, especially when high plant populations and a dense canopy are present in a field.

Corn Disease Scouting & Fungicide Guide

 

The Virginia Peanut-Cotton Infonet has moved (back)

InfoNetMap

The Virginia Tech Tidewater AREC (TAREC) maintains the Peanut-Cotton Infonet which provides growers in the region with daily weather data (e.g. temperature, rainfall), peanut leaf spot and Sclerotinia advisories, peanut heat units, cotton degree days, and a frost advisory. Four weather stations located in Suffolk, Capron, Skippers, and Waverly are maintained by the TAREC Plant Pathology program. These weather stations transmit data to a computer at the Tidewater AREC, and the data is used to run fungicide advisory models. Data are available on the Virginia Peanut-Cotton Infonet website (http://webipm.ento.vt.edu/cgi-bin/infonet1.cgi).

The data and information available here include:

Maximum, minimum, and average air temperatures
Average soil temperature at a 4 inch depth
Daily and accumulated (from May 1) peanut heat units
Daily and accumulated (from May 1) cotton degree-days
Daily and total seasonal (from May 1) rainfall
Last effective spray date for peanut leaf spot
Sclerotinia blight risk
Frost advisory (from September 25th to completion of harvest)

In addition to the data provided on the Infonet, current information on peanut diseases in the region and disease management recommendations will be provided here on this blog, so be sure to check back for updates.