Category Archives: Pest Management

Frogeye Leaf Spot Increasing in Virginia Soybean

Ed Seymore, TAREC Ag Technician who is scouting fields for brown marmorated stinkbug (BMSB), aphids, kudzu bug, etc., reported to me today that every soybean field that he is checking west of I95 in VirginiaFrogeye Leaf Spot - Painter 2013 (He’s in the Shenandoah Valley today) has frogeye leaf spot.  Some fields are heavily infested (all leaves; up to 20-25 spots per leaflet).

I called this to your attention earlier this year, as I was seeing frogeye leaf spot symptoms in several variety tests.  Many of our varieties have resistance to the disease, but some do not.  In addition, the level of resistance varies with variety.  The disease will also be worse in non-rotated fields (continuous soybean).  In the past, I’ve found that varieties with good resistance truly resist the disease.  Varieties with moderate resistance tend to hold up pretty well if soybean are in rotation.  In rotated fields containing a susceptible variety, the disease can be severe but not devastating.  But, the disease can devastate soybean varieties with no resistance when these soybean are following soybean (see photo below from non-rotated field planted to susceptible variety).Frogeye Brunswick Co - 2004 5

So, be sure to scout your soybean fields for this disease.  Symptoms are round spots with tan/grey centers and reddish halos around the spot.  I have no good threshold for treatment, but if you have a susceptible variety and/or are growing soybean after soybean, a fungicide application is in order.  If you have not already applied a fungicide, I’d also suggest using a fungicide that combines a strobilurin with a “curative” fungicide.  Combination products that have performed well on other disease, but not necessarily on frogeye leaf spot (frogeye has not been a big problem in the recent past) in Dr. Pat Phipps tests include: Priaxor, Quilt XL, Stratego YLD, and Quadris Top.

Brown Marmorated Stinkbug and Kudzu Bug Update

Both the brown marmorated stinkbug and kudzu bug continue to expand their territories.  Below is the latest update of this expansion.Kudzu Bug 080913

BMSB 080913A few fields have needed treatment.  We’ve been successful with edge of field treatments with the brown marmorated stinkbug, as they tend not to move into the middle of the fields.  Hopefully, this IPM strategy will continue to remain effective.

For the kudzu bug, the threshold is 1 kudzu bug nymph per sweep.  So, to trigger a spray, you’ll need to average 15 nymphs per 15 sweep sample.  Also keep in mind that insecticides vary in their effectiveness.  See the chart below for the most effective products.  Products highlighted in pink are recommended.
Kudzu insecticides

Foliar Fungicides May Pay in 2013

It seems that it’s been raining constantly in many places this year.  In addition, soybean growth is generally very good, creating a canopy that will maintain high relative humidity through much of the day.  Although the long-term forecast has temperatures getting into the 90’s on some days, it looks as if the 80’s will be the norm for the next 10 days or so.  These high relative humidity, rainfall events, and favorable temperatures will favor foliar disease in soybean.  Therefore, fungicide applications to R3 (beginning pod) to R5 (beginning seed fill) may pay off in 2013.

This past week, I’ve looked at several variety trials, both on-farm and the Official Variety Tests (OVT).  I’m seeing a significant amount of frogeye leaf spot.  This photo was taken in our OVT in Painter.  Although most of our Frogeye Leaf Spot - Painter 2013varieties have resistance to this disease, some do not.  You should check the seed catalog or with your seedsman to determine whether the varieties that you’re using has resistance to this disease.  If not, a fungicide will be in order if you see leaf spots forming.
Although frogeye leaf spot can be quite devastating, I’m not overly concerned since most varieties are not showing symptoms.  However, I consider this disease an indication that conditions are right for disease formation, sort of a “canary in the coalmine”.  If frogeye is prevalent, then other diseases such as Cercospora leaf blight will likely be raising its head as well.

Dr. Pat Phipps is developing a model to help us predict whether or not a fungicide will be needed.  He has much experience with and has developed effective prediction models in peanut; therefore, we think that such a model may be effective in soybean.  He will present his research at next week’s Virginia Soybean Field Day, so be sure to attend to hear his latest update.  In the meantime, listed below are the conditions that will favor disease development.  We seem to be meeting these criteria.Disease Risk Model

Many of you have likely already applied a fungicide to your full-season soybean.  The most consistent yield response has been when the fungicide has been applied at the R3 development stage.  However, we’ve seen responses as late as R5 (see article in this newsletter for an example of this).  So, with the weather conditions that we’re experiencing, I think that we could see a response even with late applications.

Still, keep in mind that fungicides are preventative; therefore, the weather conditions after the fungicides have been applied are most relevant.  Unfortunately, predicting temperatures and rainfall events is not always accurate.

Finally, it is very important to select the proper fungicide.  Our research has proven that strobilurin fungicides or pre-mixes that contain a strobilurin fungicide are most effective again the most common soybean diseases that we experience in Virginia.  The triazole fungicides are not as effective.  However, strobilurin/triazole tank mixes or pre-mixes have tended to give us the best control.  Products that have proven effective in our tests and that we would recommend using in soybean include:

Headline (pyraclostrobin)

Quadris (azoxystrobin)

Stratego YLD (trifloxystrobin + prothioconazole)

Priaxor (pyraclostrobin + fluxapyroxad)

Quilt Xcel (azoxystrobin + propiconazole)

Quadris Top (azoxystrobin + difenconazole)

Note that all contain a strobilurin, which we think is necessary.

Keep in mind that if soybean rust were to come into Virginia, we will likely need a triazole as these fungicides are most effective against that disease.  Although soybean rust is still far from Virginia (see map below), it is on the move.  I suspect that we’ll see the disease in Virginia this year.  But, I hope that it comes late as it has done in past years.Soybean Rust 081313

Corn Earworm Survey—2013

D. Ames Herbert, Jr.
Extension Entomologist
Virginia Tech Tidewater AREC

Annually, we conduct a survey to estimate Helicoverpa zea (corn earworm) infestation levels in field corn in mid- to late July. Corn is considered a nursery crop for earworm, allowing the pest to complete a lifecycle and then move on to other crops such as soybean, cotton, and peanut in August. Over 30 years of data show that there is a linear correlation between the infestation level in corn and the amount of soybean acreage that gets treated with insecticide for this pest.

To conduct the survey this year, the number of corn earworms found in 50 ears of corn was recorded in 5 corn fields in each of 27 counties, totaling 6,750 ears and 135 fields sampled. When fields were known to contain Bt or non-Bt corn, this was noted. Otherwise, samples were considered to be random and assumed to be representative of the actual Bt/non-Bt composition in each county. Age of earworms, or if they had already exited the ears, was also recorded (data not shown). We greatly appreciate the help of Virginia Cooperative Extension Agriculture and Natural Resource (ANR) Agents, Virginia Tech faculty and staff, and volunteers in this effort. These cooperators are acknowledged below. We also would like to thank the many growers who graciously allowed us to inspect their fields for earworm.

Results of the survey can be found at the Virginia AG Pest Advisory (http://www.sripmc.org/Virginia/View.cfm?lngNewsID=1011). Statewide, approximately 18% of ears were infested with earworms. For comparison, 30% of ears were infested in 2012, 33% of ears were infested in 2011; 40% in 2010; and 36% in 2009. Regional averages for 2013 were 9.2% infested ears in the Northern Neck, 15.1% in Mid-Eastern, 15.7% in South-Central, and 23.4% in the Southeast.

This survey is intended to be a representative sample, not a complete picture. We always recommend scouting individual fields to determine exactly what is happening in terms of corn earworm as well as other pests and crop problems. Also, please check the black light trap data on the Virginia Ag Pest Advisory and other reports posted weekly to keep up-to-date on the insect pest situation.

Kudzu Bug Update

Ames Herbert, Extension Entomologist

The map below lists the progression of kudzu bug in Virginia from 2011 and 2012 (blue and orange counties) though this year (purple counties).  Kudzu bug adultAs of June 27, 2013, we have documented kudzu bug (KB) infestations in soybean fields in 21 of those counties (Accomack, Amelia, Appomattox, Brunswick, Campbell, Charles City, Culpeper, Dinwiddie, Franklin, Greensville, Goochland, Hanover, Isle of Wight, Middlesex, New Kent, Orange, Prince George, Southampton, Suffolk, Sussex, and VA Beach).  The problem is spreading quickly and almost daily I get word of an infestation in another county.  If you find KBs in a soybean field in a county that is NOT listed, please contact me with that information.  If you are growing soybeans (or crop advising) in a county on the list, you should make the effort to check fields.Kudzu bug distribution map 070113 Although adults are still present, nymphs are hatching from eggs masses and dispersing to stems and petioles.  Adult KBs have a strong aggregation pheromone that results in clusters on individual plants with many plants not infested.  This will begin to change as nymphs emerge.Kudzu bug nymphs-first instar

Their tendency is to disperse to new feeding sites, new plants or areas of plants which will result in a more widespread and more uniform infestation.  As of the last week in June, the nymphs we are seeing are quite small.  You can see them with your naked eye, but it takes either really good vision (those days are over for me) or a hand lens to see that those tiny light colored things on stems are indeed KB nymphs.  This too will change as they gradually grow and molt into larger nymphal instars.Kudzu bug egg to adult Based on all that we know, we should try to keep the management recommendations as simple as possible, trusting those that have done the research—that using their recommendations will result in the best possible outcome: control at the least cost.  As we move forward in the season, the best advice is to treat fields that are flowering or developing pods when an average of one nymph (big enough to see, see image below)Kudzu bug nymphs is captured per sweep net sweep—or, 15 nymphs in a 15-sweep sample.  If this situation is encountered, we are advised to treat that field.  Remember, this insect is a slow feeder—gradually drawing down a plant’s vigor.  This is good in a way, as this gives us plenty of time to sample fields and react with a treatment if needed.  KBs do not eat holes in leaves and do not take bites from pods or seed.  You may find nymphs and second generation adults on pods, but the damage is not direct like a corn earworm that eats the seed or a stink bug that punctures the seed. This is a new pest for us and we will all have to learn how best to deal with it.  For now, we should abide by the recommendations above.  Given the number of infested fields, I fully expect that some will have to be treated, eventually.
What about product choice. We have covered this in an earlier advisory (http://www.sripmc.org/Virginia).  There are many good choices.  Below is an insecticide efficacy chart that was developed by researchers at Clemson University and University of Georgia.  They (and I) do not recommend using any product that falls below 80% control and the higher the better.  I have been asked about a lot of products, some on this chart, some not.  I go with the chart.Kudzu bug insecticides list

 

Kudzu bugs now found infesting soybean fields in Virginia

Ames Herbert, Extension Entomologist
The kudzu bug situation has very quickly become a real problem for Virginia soybean producers. We are getting reports of infestations in the South Boston area and one from near Yale in Sussex County. I am quite sure that there are more infested fields. The image sent to me from the Yale field showed at least a dozen KB adults on a single plant. WHAT IS THE THRESHOLD and WHEN SHOULD YOU TREAT??? The treatment threshold for full grown R-stage plants has not changed (see below), but I have new information on thresholds for seedling/vegetative stage plants. Based on an experiment in GA, they (and others) are recommending treating at V2-V3 stage at an average of 5 bugs (adults and/or nymphs) per plant. The threshold increases to 10 bugs per plant for plants from 1-2 feet tall. The established threshold of one nymph per sweep (one swoosh of the net) should be used for plants above 2 feet tall. Kudzu Bug 2Plants should be sampled at least 50 feet from the edge of the field. The reason for this is that the adults have an extended migration period (6-8 weeks) and colonize field edges first. If you sample the edges, chances are you will make a spray decision too soon before the migration is over. They stress that these thresholds are PRELIMINARY and will absolutely change as we get more information. Here is a cautionary tale provided by Dr. Reisig at NCSU. A NC grower noticed kudzu bugs on the edge of his April-planted beans in May 2012. They had not yet infested the interior portions of the field. He opted to spray. He then had to spray again in June, as the adults remigrated into the field. Additionally, sprays don’t kill eggs, so these hatched into nymphs. The grower then had to spray a 3rd time in June, as spider mites were flared in the field from the lack of beneficial insects. We want to avoid these costly situations while still preserving our yield.

Will Slugs Be A Problem in 2013?

Slugs are not a new problem, but they continue to be an unpredictable one.  It seems that they show up when and where we least expect them and never show up when and where we do.  But considering the cool and wet weather we’re experiencing, we should be on the watch.

The photo below was taken last May, 5 days after planting in a no-till field with a rye cover crop.  Stand was about half of what was expected and feeding scars could be seen on the hypocotyl and cotyledons.  When digging in the seed furrow, slugs were more often present than not.

Slug Damage Soybean

Cold, wet weather slows seedling growth; therefore reducing the plant’s ability to outgrow slug damage.  Slugs will feed on all crops, taking large chunks out of the stem and sometimes cutting the plants like a cutworm.  They feed mostly at night although I’ve seen them feeding during cloudy days (see photo below).  In general, they are more of a problem in wet, poorly drained fields or in low-lying portions of fields.  Still, we’ve seen them on hilltops.  Slug on SoybeanThey are usually a problem in no-till fields with high residue crops such as corn or grain sorghum and/or in fields the slug underneath last year’s corn stalk.  If the seed furrow doesn’t fully close, slugs will follow this “highway” and eat seedling after seedling before it emerges from the soil.

Slug Under corn residueWhat can be done about this problem?  First, scout the field before you plant, paying close attention to poorly drained or low-lying portions of the field.  If you find slugs, you have a couple of options.  One is to not plant and wait for warmer and dryer weather.  Slug damage usually disappears under warm and dry conditions.

Another alternative is to apply the slug bait/molluscicide, Deadline®, which contains the active ingredient metaldehyde.  It is sold at Deadline® M-Ps™ Mini-Pellets (colored with a blue dye) and Deadline® Bullets (dye-free).  This is the only reliable treatment that we have available.  It must be spread evenly at 10 to 40 lbs per acre over the infested area.  The product is fairly expensive, so the 10 lb rate is the most common and has worked well in my experience.  The product is not commonly stocked by local retailers, so it can be hard to find.

Will slugs be a problem?  Maybe.  Maybe not.  But, with the current weather conditions, I’d suggest scouting those slug-prone fields.

It’s Time to Sample for Nematodes

Nematodes are unsegmented roundworms, some of which feed in or on roots of plants.  More than 100 species of plant-parasitic nematodes feed on soybean roots, but only a few are economically important.  In Virginia, most nematode species are found in the sandier Coastal Plain soils.  However, some nematode species can also develop and reproduce on the heavier-textured soils of the Piedmont and Shenandoah Valley.  This guide will focus on those that can cause damage to soybean in Virginia.

Many soybean growers do not realize that nematodes may be reducing yields by 7-8%.  Therefore management of these pests begins with sampling and determination of the species and number present.  If nematodes are determined to be a threat, certain management practices are available to help prevent further spread and reduce the economic losses that they cause.

During 2007-2010, over 1000 soil samples were taken and analyzed for nematodes in problematic corn and soybean fields in eastern Virginia.  These fields were not chosen at random, but were selected because of low productivity or were showing symptoms that were typical of nematode damage.  Of the “problem” soybean fields, 98% contained nematodes and 71% of the fields were at moderate to high risk of nematodes causing a significant yield loss.

Sampling and Thresholds.  Virginia Tech’s Nematode Advisory Program depends on the cooperation of the agricultural community, Extension Agents, and the Nematode Assay Laboratory. Proper sampling, completion of appropriate forms, and careful laboratory analysis are all necessary to provide the grower with appropriate recommendations on nematode management. The Nematode Advisory Program can help growers avoid costly yield loss due to plant-parasitic nematodes if the steps outlined below are followed.

The Virginia Tech Nematode Assay Laboratory currently performs assays for two different purposes:

  1. Predictive: The predictive assay determines if nematode populations at harvest are likely to affect next year’s crop.  There is a fee for predictive samples.  Routine assays are $11 per sample and routine plus cysts are $19 per sample.
  2. Diagnostic: The diagnostic assay determines if poor growth in the current year’s crop is caused by nematodes.  There is no fee for diagnostic samples.

When to Sample.  The most appropriate time to sample depends on the crop and the purpose of the sample.

Predictive Assays: Fall sampling provides the most reliable information for predicting nematode problems for a future crop. Nematode populations are highest at the end of the growing season and decline as the soil temperatures drop.  Sample at or immediately after harvest of previous crop, September 15 to November 15.

Diagnostic Assays: Sample at the onset of symptoms, during the growing season. Nematodes feed only on living plants; therefore, sample soil around live plants showing symptoms. Some nematodes spend part of their life cycle inside the roots and more accurate diagnosis of nematode damage can be made from samples including roots.  Also, send another sample from a healthy plant to compare population densities.

How to Sample.  Always sample within the feeder-root zone; this varies for each crop. Avoid collecting samples when the soil is extremely dry or extremely wet. DO NOT add water to the soil after sampling. Sample areas of common crop history. For example, if one half of the field is planted to corn and the other half to soybean, sample each area separately.

  1. Collect vertical core subsamples of soil with a soil sampling core or shovel within the feeder-root zone (see figure at right). A 6″ depth should be adequate. Nematodes do not occur uniformly throughout a field; thus, more than one subsample must be taken from the same field. The number of subsamples needed depends on the size of the field:
    1. For small fields (less than four acres), collect at least 20 subsamples.
    2. For large fields (more than four acres), divide the field into four-acre sections. If the field consists of several soil types, divide the field into as many sections as there are soil types. Collect at least 20 subsamples from each section.
  2. Mix the subsamples in a clean bucket.
  3. Place at least one pint (500 cc) of the soil mixture into a nematode soil sample bag or plastic bag. LABEL COMPLETELY with the grower’s name, address, county, agent, crop information, and field or sample number.
  4. Complete the appropriate form to send with the samples. The forms are available at Virginia Cooperative Extension offices at no charge.  Soil sample bags may be available at these offices, as well, however quart-size, sealable, plastic bags are also suitable.
  5. Store samples in a cooler or refrigerator until shipping.  It is best to ship samples on Monday or Tuesday to avoid them sitting in a hot mailroom or truck.
  6. Mail samples with the appropriate form, and a check for predictive assays, immediately to the Nematode Assay Laboratory, 115 Price Hall , Virginia Tech, Blacksburg, VA 24061-0331

Interpreting Predictive Assays.  Predictive nematode sampling use nematode risk thresholds to determine whether to take action against nematodes.  These thresholds are based on results of on-farm tests over several locations and years.  The table below lists three levels of risk for yield loss according to population densities in a 500 cc sample of soil.  Risk thresholds apply to soil samples collect in late summer or early fall.  Soil samples collected during winter or spring always contain reduced levels of nematodes due to unfavorable temperatures and the absence of a host crop.  Note that if more than one nematode is present at the borderline level, the likelihood of a profitable response to a control measure increases.

Nematode Risk Thresholds for Soybean (per 500 cm3 soil)

Risk Level

Nematode

Low

Moderate

High

Soybean Cyst larvae

0-20

20-60

>60

cysts

0

>1

Lance

0-300

300-1000

>1000

Lesion

0-100

100-500

>500

Ring

0-200

200-700

>700

Root Knot

0-50

50-170

>170

Spiral

0-1000

>1000

Sting

0-10

10-20

>20

Stubby Root

0-90

>90

Stunt

0-300

300-1000

>1000

Recommendation Codes:Low = nematodes are no likely to cause crop damageModerate = borderline populations in which crop damage may occur if other factors stress the cropHigh = populations are likely to cause crop damage and significant yield loss

For more information on soybean nematodes and their management, see the VCE publication AREC-9, Soybean Nematode Management Guide.  You can access the guide on the web at http://pubs.ext.vt.edu/ or obtain a hard copy at your County Extension office.

 

Now is a Good Time to Evaluate Your Varieties for Foliar Diseases

September is a great time to evaluate your crop and the performance of varieties that you chose.  In addition to general growth and health of the crop, take some time to determine if you have any of the below diseases.  If so, you could be losing some yield.  If you sprayed with a fungicide and still have disease, reconsider the product and rate used and the time that the fungicide was applied.  Keep in mind the weather conditions when the application was made and the conditions 2 to 3 weeks after or before the product was applied.  Cool temperatures (70’s) and high relative humidity (>95% for 12 hours or more) will usually increase disease incidence.

Another caution is to never diagnose a specific disease on the plant without verifying it with a person trained to identify plant pathogens.  Only when the reproductive structures are found on the leaf can a disease be confirmed.  Many things will cause look-alike symptoms.  Be sure before you cast the blame.  There are more diseases than just the ones shown below, but these are the most common.  Brown spot is normally found in the lower part of the crop canopy (the lower leaves), Cercospora blight and leaf spot will be found throughout the canopy, and the frogeye leaf spot and downy mildew tend to be found in the upper part of the canopy.

 

Corn earworm AVT results, BMSB and Kudzu bug update….nearing the end (Dr. Ames Herbert)

Our final batch of corn earworm moths showed only 26% survivorship, down from last week. This season results showed a 37% survival rate for the seasonal total which exceeds all previous years. We are now up to 33 counties where brown marmorated stink bugs were/are present in soybean fields. Most are at pretty low levels compared with last year, but they are much more widespread. This week n some have been found in soybean fields in north central North Carolina. We are taking as much data as we can to help with answers for next season. And, the first kudzu bug nymphs were found in Charlotte County. We are nearing the end of this season in terms of insect pests and advisories…a long summer for sure.