Category Archives: Planting

Soybean Replant Decisions

Deciding whether or not to replant can be a gut-retching decision.  I readily admit that the choice to leave the present stand or replant is not a simple one.  With the ever-increasing cost of Roundup-Ready soybeans and diesel fuel, the profitability of replanting may not seem a good idea.  On the other hand, high prices make replanting more appealing.  In the end, your decision should be one based on the estimated dollar gain from replanting.  This will require a careful evaluation of the soybean stand and an analysis of yield potential of the present and replanted crop.   

In general, there is less benefit of replanting if stands are reduced uniformly across the field.  Usually replanting can only be justified where stands have been reduced by half.  However, poor stands usually include gaps in addition to merely a lower plant population.  These gaps must be accounted for.  In addition, one may have a 75-80% stand in parts of the field, while other parts of the field may only have 20-25% of the intended plant population; the decision may be to only replant part of the field. 

Remember to take into account the yield loss from delayed planting.  Up until mid-June, there is very little yield loss from delayed planting.  After this, for every day delay in planting yield declines about half a bushel per day.  For instance, if replanting in late-June/early-July (about 2 weeks late), your potential yield will have declined by 7 bushels per acre.

A few more questions must be asked before we can proceed with a step-by-step procedure for estimating the profit of replanting.  When considering a replant, do you leave plants in the field and plant through them?  In many cases, planting through the poor stand is a possibility.  If you’re using rows wide enough to fit a tractor tire comfortably between them, then you can split the rows and plant enough new plants to get the final plant population up to 100 to 120 thousand plants for full-season systems (if re-planting before mid-June) or 180 to 200 thousand plants per acre for double-cropped systems (this may require equipment or tractor tire modifications).

On the other hand, a drill will cut up many healthy plants and make them less productive than the ones that you just replanted.  Also, if the drill has wide gauge wheels, then you can severely damage a significant number of plants (there’s a significant amount of down pressure on those wheels – enough to crush a plant on hard soil).  And a damaged plant can sometimes act more like a weed than a crop.  Recognize that the plants growing in the field are going to be higher yielding that any that emerges after replanting.  If you destroy or injure those plants, you’ve just writing off some profit.  Therefore, I do not suggest planting through the old stand with a drill.

Another issue is that if you decide to replant, do you switch to an earlier maturity group?  There is little need to plant an earlier-maturing variety.  Here are two general rules of thumbs: 

April/May Plantings:  A 3-day delay in planting will result in a 1-day delay in planting.  Therefore, if planting 30 days later, the crop will mature 10 days later.

June/July Plantings:  A 5-day delay in planting will result in a 1-day delay in maturity.  Therefore, if planting 15 days later, the crop will mature only about 3 days later.

 Most important is to plant a maturity group that would grow as long as possible (therefore producing an adequate canopy for maximum yield) and still mature before the average frost date.  If you’re destroying the old crop and starting over, just make sure that the variety you chose will mature before a frost.  Alternatively, if you are planting into the old crop, you may want to choose a variety about one-third to half a maturity group earlier (depending on planting date differences) so that harvest maturity of both plantings will be more in sync.  For example, if you planted a relative maturity group 5.6 on June 10, then you could choose a relative maturity of 5.2 to 5.4 if replanting on June 25. 

Finally, realize that you’ll need a higher plant population when planting late.  Final stand with a double-crop planting should be at least 180 thousand plants per acre.  If replanting in July, increase the seeding rate to insure at least 220 thousand plants per acre.

  To estimate the profitability of replanting, follow the guidelines listed below.  Be sure to incorporate plant population and gaps in your calculations.  We’ve found that 2- to 3-foot gaps cause as much or more yield loss that from low plant populations.

1.    Determine the cause of the poor stand.  Was the poor stand the result of poor seed quality, cold wet soils, hot dry soils, planting too deep or shallow, soil crusting, herbicide injury, insect or slug feeding, poor soil to seed contact, or disease infection?  Determine if the cause can be corrected to avoid a similar situation.  If slug or insect feeding or disease is the cause, then you might expect poor stands again.

2.    Estimate the stand and percent stand loss due to gaps.  Pace off the sections of row 20 paces long in at least 6 areas of the field.  Determine (in number of paces) the total length of row lost to 2- to 3-foot gaps.  For drilled soybean, this can be interpreted at 2- to 3-foot diameter gaps.  Then determine the percent of row lost to gaps.  In addition, count and determine average number of plants per foot in sections of row not reduced by gaps.  The simplest method is to count the number of healthy plants (capable of recovery) in a length of row equaling 1/1000 of an acre.  For instance:

·      36-inch rows = 14.5 feet

·     30-inch rows = 17.5 feet

·     20-inch rows = 26 feet

·     15-inch rows = 35 feet

·     7.5-inch rows = 70 feet

Then, just multiply your counts by 1,000 to get plants per acre. 

Or, use the Tables 13.1 or 13.2 to determine remaining plant population.  The “hula hoop” method (Table 13.2) is valuable with drilled soybean or when rows cannot be distinguished.  This involves placing a circular measuring device such as a hula-hoop on the ground and counting the plants contained within.

Table 13.1. Plant populations of different row spacing with different plant counts per foot.

Plants/ foot

Row Spacing

36

30

24

20

15

7.5

 

Plant Population (1,000’s/acre)

1

15

17

22

26

35

70

2

29

35

44

52

70

140

3

44

52

65

78

105

210

4

58

70

87

105

139

278

5

73

87

109

131

174

6

87

105

131

157

209

7

102

122

152

183

244

 

 

 

 

 

 

 

Table 13.2. Hula-hoop method for determining drilled soybean populations.

No. of

Plants

Inside Diameter of Hula Hoop

30”

32”

34”

36”

38”

 

Plant Population (1,000’s/acre)a

6

53

47

41

37

33

10

89

78

69

62

55

14

124

109

97

86

77

18

160

140

124

111

100

22

196

172

152

136

122

26

231

203

179

160

144

aPlants/acre = no. plants ¸ (3.14 x r2 ¸ 43,560 ft2) where r = radius of hula hoop in feet.

 

3.    Estimate the yield of the poor stand.  Use Tables 13.3 and 13.4 to determine percent of yield potential for full-season and double-crop plantings, respectively.  Multiply this percentage by the expected yield. This is the yield to expect from the deficient stand. 

4.    Estimate the yield from replanting.  After mid-June, decrease the expected yields an additional half of a bushel per acre per day delay in planting.  This is the yield to expect from delayed planting.

5.    Determine the gain or loss from replanting.  Subtract the expected yield of the poor stand (step 3) from the yield expected from delayed planting.  This is the gain or loss in bu/A from replanting.  Multiply this number by the expected price ($/bu), using future prices, to obtain gain or loss in $/A.

6.    Estimate the cost of replanting.  Include per acre cost of tillage, herbicide, fuel, seed, and labor.

7.    Determine profitability of replanting.  Subtract your cost of replanting from your estimated gain from replanting.

 

Table 13.3. Yield response (% of maximum) of full-season soybeans to deficit standsa.

% Stand lost to gapsb

Remaining Plant Pop (1,000’s/A)

70

105

140

0

95

97

100

10

93

96

98

20

91

93

96

30

88

90

93

40

83

86

89

50

78

81

84

60

73

75

78

aSource: Pepper and Wilmot.  Managing Deficit Stands. 1991. Illinois Cooperative Extension Cir. 1317.

bGaps of 12 inches or more; 30-inch rows

 

Table 13.4.  Yield response (% of maximum) of double-crop soybeans to deficit standsa.

% Stand

lost to gapsb

Remaining Plant Pop (1,000’s/A)

100

140

180

220

0

80

88

95

100

20

71

79

86

91

40

61

69

76

81

60

48

57

64

69

aSource: 2001-2004 experiments, Suffolk, VA.

bGaps of 3 feet; 15-inch rows; MG 4 variety

It’s Time to Increase Soybean Seeding Rates

Wheat harvest has begun.  Remember that soybean yield potential declines with delayed planting date.  During the first two weeks of June, this decline is barely noticeable.  After mid-June, expect yield to decline about ½ bushel per acre per day.  So to minimize soybean yield loss due to late planting, immediately (or as soon as you can) plant.  I like to see the combine and the planter or drill in the field at the same time.

Soybean planted after mid-June will not always develop enough leaf area to capture 90-95% of the available sunlight by early pod development (R3).  Only if four layers of leaves are formed by that time will yield not be affected.  Of course the growing season makes a difference.  Last year in many parts of Virginia, even the latest-planted soybean were able to produce enough leaf area.  But, on average, June- or July-planted soybean are unable to do so.  Therefore it’s important to take actions to minimize this decline.

First, plant as soon as possible.  With the recent rains, soil moisture should not be a problem.  Even if the soil is dry on top, I suggest to go ahead and plant.  You may have to plant a little deeper to hit moisture (don’t plant much deeper than 1.5 inches), but planting depth is not as big of an issue with double-cropped as with full-season soybean.

Second, narrow your row spacing.  Narrow rows will produce more leaf area and canopy over faster.

Finally, increase your seeding rates gradually as time goes on.  I’m suggesting the following plant populations for Virginia in 2013:

  • June 2-8 – 120,000 plants/acre
  • June 9-15 – 140,000 plants/acre
  • June 16-21 – 160,000 plants/acre
  • June 23-29 – 180,000 plants/acre
  • June 30-July 5 – 200,000 plants/acre
  • After July 5 – 220,000 plants/acre

See the seeding rate chart below to determine the seeds per foot of row needed to obtain a certain number of plants per acre.  Note that these seeding rates assume 80% emergence.  For different emergence assumptions, divide your desired plant population by the percent emergence that you expect.

 

Desired Plant Population

Row Width

Early-June Planting Date

Late-June/Early July Planting Date

120,000

140,000

160,000

180.000

200,000

220,000

 

(Seed per foot of row assuming 80% emergence)

20

5.7

6.7

7.7

8.6

9.6

10.5

18

5.2

6.0

6.9

7.7

8.6

9.5

15

4.3

5.0

5.7

6.5

7.2

7.9

10

2.9

3.3

3.8

4.3

4.8

5.3

7.5

2.2

2.5

2.9

3.2

3.6

3.9

As planting is delayed, increase seeding rate.

Use lower seeding rates on more productive soils.

Calculation: Desired Plant Pop. ÷ (43,560 sq. ft./acre ÷ row width in ft.) ÷ % emergence

Example: = 180,000 ÷ (43,560 ÷ (15 ÷ 12)) ÷ 0.80 = 6.5 seed per foot of row

In addition to planting date, I’ve found that more productive soils will tolerate lower seeding rates, and less productive soils need higher seeding rates; a more productive soil will produce more leaf area than a less productive soil over the same time period.

Full-Season Soybean Seeding Rates

My soybean seeding rate recommendation for full-season production systems is to plant enough seed to insure 80,000 uniformly spaced plants/acre.  If you cannot uniformly space the plants within a row, then my recommendation rises to 100,000 plants/acre.  Based on numerous seeding rate experiments conducted in Virginia, I feel very confident in this recommendation.

Of the 27 full-season seeding rate experiments conducted from 2004 to 2009, I can group soybean yield response to plant population into the following three categories: 1) no response to plant population; 2) optimum plant population of 75-100,000 plants/acre; and 3) optimum plant population of 100-140,000 plants/acre.  Below are individual tests that represent these categories.

Full-Season Seeding Rate Study - Virginia

First, note that these examples only show the response of yield to plant population and do not take into account seed costs.  When seed costs are included, the optimum plant population is lower than is shown on the graphs.  Also note that these graphs show yield response to plant population, not seeding rate.  To convert to seeding rate, adjust these numbers to reflect your expected percent emergence.  For example if you assume 75% emergence, you would need to adjust your seeding rate to 133,000 seed/acre to obtain 100,000 plants/acre.

We conducted these experiments with maturity group 4 and 5 varieties.  While one may think that more seed might be required for early-maturing varieties, this was not the case (i.e., group 4 and 5 varieties responded similarly).

There may be some correlation with yield potential as listed below:

  • 30-40 Bu/A Yield Potential (14 tests)
    • 6 required 100-130,000 plants/acre
    • 2 required 70-100,000 plants/acre
    • 6 had no yield response
  • 40-60 Bu/A Yield Potential (7 tests)
    • 2 required 70-100,000 plants/acre
    • 5 had no yield response
  • > 60 Bu/A Yield Potential (7 tests)
    • 2 required ~130,000 plants/acre
    • 4 required 70-100,000 plants/acre
    • 1 had no yield response

So, what do these data mean?  It means that every environment (year & location) is a little different and there is no way that we can predict with 100% accuracy the exact seeding rate that will be required for your field in the coming growing season.  However, we do know that if we can obtain full canopy closure (90-95% light interception) by full flower (R2 stage) to early pod (R3 stage), we can maximize soybean yield potential.  In a dry year or under a droughty soil (low yield potentials), greater seeding rates will help insure this.  Still in most cases (30 to 60 bushel yield potentials), 70-100,000 plants/acre are adequate.

What about fields with greater than 60 bushel yield potential?  In this case, we need to look beyond adequate leaf area and need to start thinking about how many pods the soybean plant can support.  For instance, at 40 bushels/acre and 100,000 plants/acre, we only need to produce 72 seed/plant (using 3000 seed/lb) or about 30 pods/plant (using 2.5 seed/pod).  But, at 60 bushels/acre, we need to produce 108 seed or 45 pods per plant; at 80 bushels/acre, we need 144 seed or 60 pods per plant.  Considering that 12 reproductive nodes per plant are possible, 4 to 5 pods per node on a rather tall plant would be required.  Although branching will also contribute to yield, that seems a lot to ask of one soybean plant.  So, if you are trying to win the yield contest or are irrigating soybean, I suggest planting enough seed to obtain 120-140,000 plants per acre in a full-season system; otherwise 80-100,000 plants are adequate.

Cool Soils Should Alter Your Planting Plans

It goes without saying that every year is different and this winter/spring has been wet and cold. I think that most of us have assumed that the soil temperatures are much below normal; therefore, holding off a few days with planting may be a good idea.  According to 2013 and five-year historical soil temperature records at Orange and Suffolk (from the USDA-NRCS Soil Climate Analysis Network weather stations), soil temperatures have been fluctuating quite a bit.Virginia Soil Temps 2013

After early-April soil temperatures proved to be much colder than normal, a week or two of warm weather put us back on track with average.  Then, temperatures dropped off again.  Fortunately, the last two weeks of cool weather have not lowered the soil temperatures all that much.

Although our soils have warmed substantially since early April, the temperatures are still less than optimum for soybean germination and emergence.  Ideally, I like to see temperatures hold steady at 65 to 70O or above.  The ideal temperature for soybean germination is 77O and the optimum range is 68 to 86O.  The maximum is 94O, where germination can be inhibited.  However, we can’t always wait for perfect temperatures if we are to get all of our soybeans planted on time.

Still, planting soybean in cool (<65O) will lead to delayed emergence and increased chance of seedling disease that can reduce stands, weaken emerged plants, and inhibit early-season growth.  For a more detailed description of fungal seedling disease in soybean, refer to an article I wrote last May on the subject and can be found in my Virginia Soybean Update blog.

I stress that the greater time required for emergence, the greater probability that the seed will become infected with soil-borne disease.  If you are planting into cool soils, I strongly suggest using fungicide-treated seed as an insurance against seedling disease. These treatments will protect the seed and seedling if emergence is delayed.

But, seed treatments should not be a substitute for other practices that encourage rapid seedling emergence.  Here is my checklist for insuring a good stand free of seedling disease:

  • Know the germination and vigor of your seed; adjust the seeding rate accordingly.
  • Insure good soil-to-seed contact by properly setting your planter to cut through the residue and penetrate to the proper depth.
  • Plant soybean seed ¾ to 1 inch deep into good soil moisture.
  • Consider fungicide seed treatments if planting into cool soils.

Plant As Soon As Possible For Maximum Double-Crop Yields

Early planting and good stands are the foundation of high double-crop soybean yields.  Small grain harvest is very early this year.  If we can get soybeans planted by the first week or two of June, there will be very little yield loss due to late planting.  Good wheat and soybean yields plus high prices can make the wheat/soybean cropping system the most profitable in Virginia.

I stress that it is very important that we forge ahead with soybean planting.  After mid-June, we lose about ½ bushel per acre per day with every day delay in planting.

This is not to say that double-crop yields will always be less than full-season yields.  Rainfall during pod and seed development is most important.  For two of the last three years, double-crop yields were equal to or greater than full-season yields.  But, we can’t count on late-season rains every year.  Therefore, it is important that we get the double-crop soybean set up for maximum yields.  That means planting as soon as possible to maximize leaf area production.

For those of you that do not have adequate soil moisture, planting into dry soils is OK, but only if the soil is completely dry.  If the soil has enough moisture to swell but not germinate the seed, the seed may die.  If the soil has enough moisture to initiate germination, but not enough to send a root into soil moisture, it will definitely die.  Considering the cost of seed, my suggestion is not to plant into these dry soils; wait for a rain.  Only if you are sure that there is absolutely no soil moisture in the field and you have hundreds (or thousands) of acres to plant, would I suggest planting into dry soils.  At $40 to 50 per bag, we don’t want to waste any seed.

Keep in mind that my seeding rate recommendation for double-crop soybeans is to plant enough seed to insure a final plant population of 180,000 plants per acre.  Assuming 80% emergence, that’s 225,000 seed per acre (~75 lbs of seed).  Do not attempt to lower seeding rates in double-crop settings. Furthermore, if planting moves into July, we’ll need to increase that seeding rate to 250,000 seed per acre.  On droughty soils and July planting, yield increases will take place up to nearly 275,000 seed per acre.

Insure Rapid Seedling Emergence and Survival

Once the seed is in the ground with good soil-to-seed contact (insuring a good environment for germination), we must then turn our attention to getting the growing plant out of the ground as quickly as possible and insuring that it survives.  The longer the seed takes to germinate and emerge, the greater likelihood of poor stands and unhealthy plants.

Soil Moisture and Seedbed Condition.  Always try to plant into moist soils.  However, I recognize that this is easier said than done, especially when several hundred acres of soybean needs to be planted and it’s getting closer and closer to wheat harvest or you need to side-dress the corn, or many other things need doing.  Still, seed are expensive and replanting is even more expensive.

If the soil is completely dry, then the seed will usually wait on moisture.  Unfortunately, during dry times, the field is rarely completely dry.  If there is enough moisture to swell the seed but not get the seedling out of the ground, then we have a problem.  Seed need to imbibe over half of their weight in water to germinate.  The critical seed moisture content for germination is 20%.  Germination is not affected if the seed has imbibed water for 6 hours (seed is swollen, but seed coat not broken), then it dehydrates to 10% moisture.  If seed has imbibed water for 12-24 hours (seed coat is broken, no radical), then germination may be reduced 35-40%.  If the radical has emerged and seed drops to 10% moisture, few if any seedlings will survive.

Surface soil compaction will physically hinder emergence and also result in less soil moisture because of less pore space.  Row spacing will affect seedling emergence under crusted or compacted soil conditions because seed are closer together within the row; therefore, will exert more upward force, per foot of row, to emerge.

Soil Temperature.  The ideal temperature for soybean germination is 77OF and the optimum range is 68 to 86OF.  The maximum is 94OF, where temperature will actually inhibit germination.  Planting early (mid-April to mid-May) may delay emergence due to cool soils.  Planting in July increases risk of high soil temperatures, but soil moisture during this time of year is usually the bigger problem.  I did see high temperature inhibition in some of our double-crop plantings in 2010.  Regardless, if the soil temperature is not in the optimum range, emergence will be delayed.  With this delay comes a greater likelihood of the seedling being attacked by disease or insects.

Planting Depth.  Soybean seed depth should be between ¾ to 1¼ inches.  If topsoil moisture is lacking, use the deeper placement, but never plant deeper than 1½ inches.  If topsoil is adequate shallower seed placement may speed up emergence, but probably won’t make much difference under warm soil conditions.   Just make sure that the seed is in contact with moist soil.  Placement depth is controlled by the gauge wheels.  Ideally, these should be adjacent to the disk opener.  If controlled by the seed firming/closing wheel, then uniformity of seed depth could be erratic.  The deeper you plant, the longer it takes for the seedling to emerge.  The seedling physically has further to go to emerge, plus the soil may be cooler at deeper depths.  Germination and emergence rate is controlled by temperature.  So, when soils are warm, deeper planting depth has less detrimental effect on emergence.  If soils are hot, deeper placement may actually be beneficial.  Finally, uniform time of emergence of seedlings should be a goal even though soybean compensate well.

Protecting the Seed and Seedling.  Certain environments such as cold soils, non-rotated land, poor quality seed, or a field history of insect pests or disease favor specific pests.  Again, the greater time required for emergence, the greater probability that the seed will become infected with soil-borne disease.  Therefore, rapid emergence is the best defense against seedling disease.  No-tillage/high residues, early planting, planting into cold soils, and deep seed placement are all factors that may delay emergence; therefore, your management will need to be adjusted when one or more of these conditions are present.  Seed treatments will protect the seed and seedling if emergence is delayed, but should only be used if other methods to decrease emergence time have been exhausted.

To review, here’s a checklist for rapid seedling emergence:

  • Know the germination and vigor of your seed.
  • Insure good soil-to-seed contact
  • Plant soybeans ¾ to 1 ½ inches deep and into sufficient soil moisture.
  • Plant into warm soils (68 to 86OF).
  • Consider fungicide seed treatments if planting early into cool soils.

Three Principles of No-Till Planting

Nearly all of Virginia’s soybean acres are planted no-till.  Therefore, most of you are experts at getting a good stand even in heavy residue.  Still, a quick review of the principles of no-till planting is always helpful.  This can be boiled down to three simple steps: 1) Cut the residue; 2) Penetrate the soil to the proper depth; and 3) Insure good soil-to-seed contact.  Some may add a fourth step – close the seed-V, but I consider that part of step 3.  For more information, see VCE publication 442-457, Planter Drill Considerations for Conservation Tillage Systems, which can be found at the VCE web site, http://pubs.ext.vt.edu/442/442-457/442-457.html.

1. Cut the Residue.  In order to cut the residue, it first needs to be spread uniformly over the field.  This begins with harvest of the previous crop.  Residue cannot be cut adequately when residue levels are piled in one place.  Furthermore, disk openers don’t really cut through piles of chaff; instead, it is tilled into the soil, which hinders the third step of insuring good soil (not chaff)-to-seed contact.  Chaff in the seed zone will only pull moisture away from the seed.

Standing residue is easier to plant through than mowed/shredded residue.  So, don’t shred stalks and consider stripper headers for small grains.

Allow the residue to dry and become crisp before planting.  Planting too early in the morning is one of the biggest mistakes made.  Regardless if the planter is set right or not, cutting wet or tough residue is a challenge that might not be overcome.  Remember, 75% of soybean yield is established when you put the seed into the ground.  Don’t get in a big hurry.  Allow the residue to dry.

This should go without saying and I rarely see this being done in Virginia.  But, never burn the straw!  This is a valuable resource.  Burning will remove any nitrogen and carbon and send it up into the air.  This adds to pollution and throws away probably the two most important resources for producing a good crop and improving soil quality.

Once the residue is spread evenly, we can then turn our attention to the planter or drill.  First, adjust the disk openers.  Coulters and disk openers should be sharp, have a diameter large enough to create a “scissoring” action between the blade and ground, and not be bent or damaged.

Double-disk openers should be set to work together with little to no gaps between disks.  Maintain approximately 1 to 1½ inch of contact between the two disks.  If this blade-to-blade contact cannot be maintained, if blade diameter is worn below the manufacturer’s recommendations, or if the blade edge is bent, chipped, or jagged, the blade should be replaced.  Watch the leading edge of offset double-disk openers for significant wear and bending.  Essentially, the leading edge of the disk takes the abrasion and wear of cutting straw or stalks and penetration the soil.  Gradual wear leads to a bigger gap between the double-disks.  If the gap becomes too big or the leading disk edge becomes bent, the disks will push residue into the furrow instead of cutting through it.  For offset double-disk openers, a business card-width gap should be maintained to insure proper operation and prevent the trailing disk from cutting into the leading disk blade.

Once insuring that the disk openers can do the job, the next thing to bring your attention to is adequate down pressure.  This is not the same thing as weight.  We can add weight later.  Down pressure is controlled by the springs or hydraulics on the planter.  It’s the amount of downward pressure being applied by each planting unit.  Although adequate down pressure is most related to step 2 – disk openers must penetrate to the proper depth to adequately cut the residue – practices and adjustments within each step may overlap.  The coulters and/or disk openers must act like a pair of scissors.  The drawing to the right illustrates this concept.  The dashed line represents the soil surface and the solid line represents the angle between the coulter and soil.  Note that the coulter is running at the proper depth and the contact angle is about 45O.  At this angle, the cutting is scissor-like and residue will be cut.  Keep in mind that the size of the coulter will affect this angle; bigger is usually better.

Although not necessary, coulters can be added in front of the planter openers to ensure residue cutting.  Like disk openers, the cutting angle must be correct.  All the same principles mentioned thus far and in step 2 apply.  Because coulters are usually mounted several feet in front of the seed opening/placement device (in the case of coulter caddies even further), many use wide-fluted coulters.  A pivoting hitch or a steering mechanism will keep the seed openers tracking in the coulter slots.

2. Penetrate the Soil to the Proper Depth.  The primary differences between conventional planter/drill systems and those designed for conservation tillage systems are down-pressure and weight.  Since openers and soil engaging devices must deliver more down pressure to penetrate firmer no-till soils and cut the residue, conservation planter/drill systems include heavy-duty down-pressure devices, are built heavier, and have the ability to carry much more weight than conventional tillage systems.  Penetrating the soil to the proper depth may require up to 500 pounds of down-pressure per planting unit.  Down-pressure springs are adjustable and multiple springs can be added if insufficient pressure is achieved.  Hydraulic down-pressure controls are also available.  Only after adequate down-pressure is achieved are we ready to add weight to the planter/drill.  Adding weight by itself will not ensure penetration to the proper seeding depth.  Add sufficient weight to the planter to ensure penetration of the coulters and seed furrow openers into untilled soil, and to keep the seed-metering drive wheels on the ground.

Soil type affects planting depth.  The planter/drill will tend to sink and begin dragging up residue if it moves out of heavier soil into a lighter soil, if the planter moves from a no-till to a tilled area, or if the planter moves from compacted land to that which is not compacted.  The result is that the coulters move too deep and begin pushing, instead of cutting, the residue.  Never set the planter on the field edges where the soil is more likely to be compacted or in an unrepresentative soil.  Wide gauge wheels, drill units that do not run side-by-side but are offset, and high clearance will reduce residue dragging when in a field with highly-variable soil types
.

3. Insure Good Soil-to-Seed Contact.  Good soil-to-seed contact cannot be achieved unless the first two steps are performed correctly.  If the first two steps were carried out correctly, the last step will be much easier.  There are two methods for seed-depth control on most no-till planter/drill systems: 1) setting the depth from a gauge wheel adjacent to the seed furrow device or 2) adjusting press wheel pressure behind the seed furrow openers.  The disadvantage of any system using the press wheel for depth control is its distance from the seed opener.  As the distance increases there is a greater possibility that irregular terrain will influence both depth control and the press wheel’s ability to provide good soil-to- seed contact.  Depth control from an adjacent gage wheel is preferred.  In either case, keep adequate pressure on the gauge or press wheel to force the openers into the soil to the proper depth.  For more detailed discussion on the advantages of different types of press wheels (i.e., flat, ribbed, angled, etc.), see VCE publication 442-457 referenced earlier.

Sufficient weight must remain on the press wheels to ensure firming of the seed into the soil.  Wet soil is easily compacted and care must be taken not to over pack the soil, making it difficult for seedling roots to penetrate the soil.  In dry soil conditions, extra closing force may be needed.  The key is to evaluate seed-to-soil contact, not just closing the top of the seed-V.  As long as the contact is maintained, something as simple as a harrow that acts to close the top of the V and pull light residue cover back over the V may be all that is needed.  This is a common practice on drills that use a narrow press wheel.

These three principles will make you successful at no-tilling soybeans, or any crop for that matter.

Lower Seeding Rates & Maintain Yields with Narrow Rows & Uniform Stands

Before the cost of soybean seed jumped with the introduction of the Roundup-Ready trait, soybean was planted at much greater rates than was needed for maximum yields. Back then, seed was cheap. It only cost a few dollars to insure adequate stands – even if only 50% of those seed emerged. Today, planting extra seed is a luxury that we can no longer afford, especially if the seed includes one or more of the many seed treatments now available. Furthermore, with better planters and drills that easily handle residue and place the seed at the proper depth, we tend to get better stands. But, just how low can we go? How many seed per acre does it take to maximize yield?
Over the past 8-10 years, I’ve collected a lot of seeding rate data on different soils throughout Virginia. The main conclusion from that research was that seeding rate recommendations were too high for full-season (May-planted) soybean and barely adequate for double-cropped (late June- to July-planted) soybean. Over the past three years, I’ve also collected quite a bit of data following a barley crop (early June planted) and I feel comfortable with relatively low seeding rates for this cropping system. My current recommendations are listed below. Note that the table lists the desired final plant population in plants per acre and the seeding rate calculations (in plants per row foot) are based on 80% emergence. Your final stand may vary depending on emergence. In general, for May plantings, 80,000 plants per acre are adequate for all row widths.

Suggested Soybean Seeding Rates for Virginia

Don’t Widen Rows to Save Seed. I’ve heard talk of widening rows to save seed. It’s true that if you move back to 30 or 36” row spacing, you’ll not use as much seed. That’s because you can only crowd so many plants into a row and get a benefit. Basically, too many plants within the row are competing with each other. But, you’re losing the benefit of narrow rows, which is, once again to capture 90% or more of the sunlight by flowering and early pod development. Sure, it’s possible that in a good year on a good soil, you’ll be able to meet these requirements. But over time, it’s not likely. On the other hand, row spacing of 15 to 20 inches should provide adequate canopy if planted in May through mid-June. Keep in mind that the later you plant, the greater the benefit from narrow rows. Also, narrow rows benefit early-maturing varieties more than late maturing varieties. And, as I’ve alluded to earlier, there is less of an advantage to narrow rows on more productive soils. Therefore, some fields will likely respond more to narrow rows than others.

Here’s a good way to check and see if your row spacing is narrow enough for a particular field. This summer, when the soybean crop is in full bloom, walk your fields. As you’re walking, look into the canopy. Can you see any ground? If so, then you’re rows are not narrow enough. If you’re already planting in narrow rows, then consider raising your seeding rate. This will insure that you’re meeting the leaf area requirements.

Uniform Stands Matter. We generally think that soybeans will compensate for poor stands, wide rows, and/or gaps within rows. Soybean will compensate much more than other crops. However, I think that uniformity of stand within the row matters.  The more uniform the spacing between plants within a row, the greater the yield potential. This was shown with double-cropped soybean in research conducted in Virginia that compared a 15-inch planter with a standard drill and a drill that uniformly distributes the seed in the row (see figure below). I’ll refer to this drill as a “precision drill.” Details of the drills used are shown below.

Meteriing wheels for various seed types in the Great Plains 1510P or 1520P Precision Seeding System

Type, make and model, seed singulation method, and row spacing of seeding equipment used in this study.

Stand uniformity with the precision drill was equal to the vacuum-meter planter and better than the standard drill. Yield results are also shown below.  Soybean yield with the standard drill was equal to the vacuum-meter planter in three of four years and less than the vacuum-meter planter in one year. Soybean yields were greater when planted with the precision drill than when planted with the vacuum-meter planter in 2 of 3 years, and averaged 10% over three years of study.

When Should Soybean Be Planted in Virginia?

We must remember a main goal of many pre-plant and at-planting decisions is obtain adequate canopy and leaf area that captures 90% or more of the sunlight by the R2 (full bloom) to R3 (beginning pod) stages. A secondary goal related to planting date is to position the most critical time of crop growth, the pod (R3-R4) and seed (R5-R6) development stages, during a time of the season where there are sufficient resources (water, light, nutrients, CO2, and O2) to maximize yield.
We might assume that the earlier that we plant, the sooner the crop emerges; therefore, earlier emergence means faster canopy closer and more leaf area development. Furthermore, the earlier we plant, the sooner the crop will reach first flower (R1); therefore, the critical R3-R6 development stages will take place at a time when days are longer and there is more sunlight. While these assumptions are mostly true, the end result will not always contribute to final yield.
Let’s examine the first assumption that earlier planting means more leaf area. This is generally true, but how much leaf area do we really need? Soybeans need enough leaf area to capture 90 to 95% of the sunlight by the R2/R3 stages. This minimum requirement can usually be met by planting in April, May, and even early-June. So, adequate canopy development is not usually an issue until we double-crop the soybean after wheat harvest
Of course canopy development is affected by the environment in which the crop is growing, mainly by soil moisture and temperature. If soil moisture is lacking, growth will be slowed but usually not enough to prevent adequate canopy development, even with late-May and early-June planting dates. Besides, early-season soil moisture is usually not a problem with full-season no-till production unless a cover crop has removed most of it during a dry spring. Even if this were to occur, it can be alleviated by killing the cover crop earlier than planned during dry springs and when continued drought conditions are forecast. Low water-holding capacity soils may also affect canopy development even when there is adequate soil moisture at planting, but other cultural practices can make up for the lower leaf area in these situations (discussed later). I reemphasize that it is rare that leaf area requirements are not met with full-season plantings.
In addition, there is not as much to be gained (from a leaf area perspective) from planting between April and early-June. Why? Growth during April and early-May is slow due to cooler temperatures. Therefore, there is little difference in vegetative soybean growth between an April planting (cooler conditions) versus a May planting versus an early-June planting (warmer conditions). When planted in April, soybean may take up to three weeks to emerge and growth will generally be slow until mid-May. On the other hand, when planted in early June, the crop will emerge within 3 to 5 days and, if soil moisture is adequate, will grow rapidly. Therefore the time between planting dates will be much greater than the difference in the subsequent growth of the crop. In summary, I see few benefits, at least from the standpoint of canopy development, in planting soybean before mid-May to early June in Virginia.
An exception may be if you are planting an earlier-than-recommended maturity group (MG) for your area (MG III or early IV). In Virginia, late MG IV’s and MG V’s are the best adapted varieties, with IV’s doing better in the northern half and V’s doing better in the southern half of the state. If you stick with late IV’s and V’s, there should be no issue with canopy development when planted in April or May. On the other hand, a MG III planted in late-May to early-June may suffer as shown in the below graph. This is because there is not enough time between planting and flowering to allow adequate leaf area development. Still, note that yield suffered only when the MG III variety when planted in early June. The yield response does not always look this way due to rainfall patterns, soil type differences, etc. Sometimes MG III varieties will show a similar response as the later-maturing soybean. But, I think that it is safe to say that if planting early-maturing varieties, you should try to get those planted by mid-May to reduce the risk of low leaf area.
Of course, when planting double-crop soybean, canopy development will suffer. Therefore, other cultural practices such as narrow row spacing and greater seeding rates must be implemented to minimize low leaf area effects. Late-planting and double-cropping will be discussed in next month blog.


So, what about the second assumption that the earlier we plant, the sooner the crop will reach R1; therefore, the critical R3-R6 development stages will take place at a time when days are longer and there is more sunlight. The reasoning is that the longest day of the year is during late-June. With more daily radiation during pod and seed development, there is more energy being put into yield. So, it stands to reason that if we were to plant in April, we could push the pod- and seed-development stages into an environment where we can capture more light. This may work as long as the crop is running full speed ahead and there is no other stress to slow it down. But, is this the case in Virginia? Will there be adequate moisture and temperatures lower than 90O F during July and August? I doubt it.
Let’s examine this a bit further. For April and May plantings, a 3-day delay in planting results in about a 1 day delay in maturity. Therefore, planting in mid-April instead of mid-May will allow the plant to reach flowering (R1/R2) about 10 days earlier. Instead of the first flower being on the plant during the last 10 days of July, it’ll be there during mid-July. Instead of reaching R5 (beginning seed) by the last week in August and R6 (full seed) in early September, the crop can reach theses stages by mid- to late-August. But, is this really a good thing? Do we really want to shift the R4 to R6 stages into typically the hottest and driest time of our season? Even if you irrigate, you’ll have the heat to contend with. And it’s much more expensive to irrigation when the temperatures are higher.
Some may suggest that we should take this a step further and use an earlier maturing variety when planting in April. This is sometimes referred to as the Early Soybean Production System. OK, let’s use a variety with a relative maturity of 3.7 instead of one with a relative maturity of 5.2. This will shift the maturity of the crop 12-15 days earlier. So, we are now putting the critical R4 to R6 stages right into July and two weeks of August. Although the crop is experiencing longer days, it’s also experiencing higher temperatures and, likely, lower soil moisture. The Early Soybean Production System will work if you have a consistent August drought. However, our droughts in Virginia are intermittent. We are just as likely to have a drought in June as we are as in July as we are in August. We can’t predict it. However, it is usually hotter in late-July and August than it is in September. So, in the long run, it’s better to push soybean development in Virginia to a later part of the season, even though we cannot gather as much sunlight during the day. Maybe that’s one of the reasons that soybean following our barley crop usually yields as well or better than soybean planted in May.
To conclude, planting soybean early will have little effect on yield in Virginia. Plus, it could be detrimental, especially on low water-holding capacity soils. My suggestion is that you adjust planting dates to suit and spread out labor and equipment needs, but not to increase yield.